

University of Pretoria Yearbook 2019

Thermoflow 310 (MTV 310)

Qualification	Undergraduate
Faculty	Faculty of Engineering, Built Environment and Information Technology
Module credits	16.00
Programmes	BEng Mechanical Engineering
	BEng Mechanical Engineering Engage
	BEng Metallurgical Engineering
	BEng Metallurgical Engineering Engage
	BEng Mining Engineering
	BEng Mining Engineering Engage
Prerequisites	No prerequisites.
Contact time	3 lectures per week, 1 practical per week
Language of tuition	Module is presented in English
Department	Mechanical and Aeronautical Engineering
Period of presentation	Semester 1

Module content

Fluid mechanics: Introduction to fluid properties and fluid continuum concepts. Fluid statics and pressure. Control volume method for mass, momentum and energy conservation using integral approach. Bernoulli equation. Dimensional analysis and similarity. Flow in pipes and channels: friction coefficients and Reynolds number, pressure drop; laminar, turbulent and transitional flow. Experimental techniques in fluid mechanics. Heat transfer: Introduction to heat transfer mechanisms, thermal properties of materials. Solution of the heat conduction equation for different boundary and initial conditions. Heat generation in a solid. Steady heat conduction. Thermal resistance networks describing conduction, radiation and convection.

The information published here is subject to change and may be amended after the publication of this information. The **General Regulations (G Regulations)** apply to all faculties of the University of Pretoria. It is expected of students to familiarise themselves well with these regulations as well as with the information contained in the **General Rules** section. Ignorance concerning these regulations and rules will not be accepted as an excuse for any transgression.